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ABSTRACT

More and more evidences demonstrate that the long
non-coding RNAs (IncRNAs) play many key roles in
diverse biological processes. There is a critical need
to annotate the functions of increasing available
IncRNAs. In this article, we try to apply a global
network-based strategy to tackle this issue for the
first time. We develop a bi-colored network based
global function predictor, long non-coding RNA
global function predictor (‘Inc-GFP’), to predict
probable functions for IncRNAs at large scale
by integrating gene expression data and protein
interaction data. The performance of Inc-GFP is
evaluated on protein-coding and IncRNA genes.
Cross-validation tests on protein-coding genes with
known function annotations indicate that our method
can achieve a precision up to 95%, with a suitable
parameter setting. Among the 1713 IncRNAs in the
bi-colored network, the 1625 (94.9%) IncRNAs in the
maximum connected component are all functionally
characterized. For the IncRNAs expressed in mouse

embryo stem cells and neuronal cells, the inferred
putative functions by our method highly match
those in the known literature.

INTRODUCTION

A large number of long non-coding RNAs (IncRNAs)
have been identified by large-scale analyses of full-
length complementary DNA (cDNA) sequences (1-3),
chromatin-state maps (4,5) or other analyses (6,7) based
on RNA-seq data (8). LncRNAs are involved in diverse
cellular processes, such as cell differentiation, imprinting
control, immune responses, human diseases and tumori-
genesis. See (9—13) for more details. In the genome-wide-
analysis of IncRNA stability, they found out that IncRNA
half-lives vary over a wide range, suggesting the existence
of complex metabolism and widespread functionality of
IncRNAs (14). In another study by Guttman et al. (15),
they provided an emerging model where IncRNAs might
achieve regulatory specificity through modularity,
assembling diverse combinations of proteins and
possibly RNA and DNA interactions. All of these
suggest the diversity and complexity of IncRNA functions.
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Investigating the functions of IncRNAs is important in
uncovering the mechanisms of biological processes.
However, the functions of most IncRNAs remain to be
determined. Functional characterization of IncRNAs is a
challenging task. First, our knowledge on IncRNAs is
limited; even the functional elements in the primary
sequence of non-coding genes, if exist, remain unknown
(16). Second, the poor sequence conservation of IncRNAs
(17) makes it difficult to infer putative functions for
IncRNAs by genomic comparison. Third, the lack of col-
lateral information, such as molecular interaction data
and expression profiles, also hampers the functional anno-
tation of IncRNAs. Fourth, to examine the functions of
IncRNAs based on their secondary-structure information
is still infeasible because of the little associations between
functions and secondary-structure for IncRNAs (18).

Previous work on function prediction of IncRNAs has
been almost exclusively based on a local strategy, and only
a small part of IncRNAs in their data set can be function-
ally characterized. Guttman et al. (4) used chromatin-
state maps to identify ~1600 long-intervening non-coding
RNAs, lincRNAs, and developed an approach for
function assignment of lincRNAs. By the same method,
Khalil et al. (19) identified ~3300 lincRNAs in six human
cell types and further examined the associations between
these lincRNAs and polycomb repressive complex 2
(PRC2). Liao et al. (20) constructed a coding—non-
coding co-expression network based on gene expression
data and predicted the probable functions for IncRNAs
in the network. Cabili et al. (6) defined a reference catalog
of >8000 human lincRNAs and functionally character-
ized them through co-expressions between protein-coding
and non-coding genes. Although all these work have
augmented our knowledge on IncRNAs, only gene expres-
sion data and local information are exploited in their
methods.

Inspired by the work for protein function annotation
(21), we studied in this article the possibility of exploiting
a global network-based strategy to predict probable func-
tions for IncRNAs at large scale. We developed a long
non-coding RNA global function predictor (‘Inc-GFP”).
In this method, a bi-colored biological network is con-
structed using coding-non-coding co-expression data
and protein interaction data. Here, ‘bi-colored’ means
the inclusion of two kinds of vertices—protein-coding
and non-coding genes and the integration of two kinds
of edges—co-expression and protein—protein interactions
in the network. It is well known that macro molecules,
such as proteins, nucleic acids and carbohydrates, are
co-operating in the biological function, instead of
playing roles alone. We expect that by making use of
IncRNAs and protein-coding genes in our bi-colored
networks, we are able to model the real biological
processes as accurate as possible. A global propagation
algorithm is designed to infer putative functions for
IncRNAs at large scale in the bi-colored network.
Inc-GFP is validated on protein-coding genes with
known function annotations by 10-fold cross-validation
tests. It achieves a precision of 90% at rank threshold
100 (i.e. genes ranked within top 100 among all the
genes in the bi-colored network based on the association
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scores for a given function category), and it is also robust
to different kinds of noise in the network. Using our
method, we were able to predict putative functions for
1625 IncRNAs, covering 94.9% of all the 1713 IncRNAs
in the bi-colored network of mouse. The predicted func-
tions suggest that IncRNAs are implicated in a variety of
biological processes. In the case study, the inferred
putative functions for some IncRNAs expressed in
mouse embryo stem cells (mESCs) and neuronal cells
highly match the known literature.

MATERIALS AND METHODS
Principles of Inc-GFP

The common algorithms for protein function annotation
are based on the observation that genes in the vicinity of
the target gene are more likely to have identical or similar
functions (21). Analogously, our method, Inc-GFP, also
exploits the observation. First, a bi-colored network is
constructed whose vertices are protein-coding and non-
coding genes, and edges are co-expression and protein
interaction. Then a global propagation algorithm is
designed on the bi-colored network, which takes the
known function annotations for genes as the sources of
‘function flow’. And the ‘function flow’ propagates on the
network iteratively. Based on the amount of ‘function
flow’ that a gene receives during the propagation
process, an association score is computed for each
unannotated IncRNA, measuring how much it can be
annotated with a function. The scoring scheme of
Inc-GFP is illustrated in Figure 1. The bi-colored
network is expressed as an edge weighted graph. The
weight is used to measure the confidence of the edge con-
necting the two vertices in the network. A final association
score is used to measure how much a gene can be
annotated by a given function category. The calculation
of the association score considers global and local con-
straints imposed by the network topology. The global con-
straint simulates the iterative propagation of ‘function
flow’ on the network, whereas the local constraint repre-
sents the previous knowledge score, which is computed
based on a local ‘voting-rule’.

Data sources

Similar to the integration of multiple data sources for the
annotation task of proteins, we integrate co-expression
data and protein interaction data to construct a
weighted bi-colored network in a naive Bayesian fashion
(22) as follows,

et 1~ (1 2w s (1 ) §))

i,j 0]

Here, wi"*P", Wil and wi-cor“!denote the weighted
co-expression, the weighted protein interaction and the
weighted relation in the bi-colored network between
gene [ and gene j, respectively. More details of the
network  construction have been described in
Supplementary Methods.

Regarding to the analysis of co-expression data, Liao
et al. designed a strict computational pipeline to
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Figure 1. Principles of Inc-GFP. (A) The coding—non-coding bi-colored network is represented as a graph. (B) Function 7 is used to compute the
previous knowledge score between an unannotated IncRNA v and the given function category f. (C) Function S is used to compute the final
association score between v and f based on the genes known to be annotated with /. The computation not only simulates the iterative propagation of
the ‘function flow” on the network but also considers the local constraint on behalf of previous knowledge score.

re-annotate the probes corresponding to coding and non-
coding genes in the Affymetrix Mouse Genome 430 2.0
Array (Mouse 430 2.0 array). Based on re-annotated
microarray data, a coding—non-coding co-expression
network is constructed, where a node represents a
molecule (coding or non-coding gene), and an edge repre-
sents an expressional correlation (20). In their method, the
co-expression network was constructed using 34 micro-
array data sets and a stringent pipeline to eliminate the
vast amount of ‘noise’ in microarray data and to represent
all developmental stages and issues (20). As genes with
similar expression patterns under multiple, but
resembling, experimental conditions have a higher prob-
ability of sharing similar functions (23) or being involved
in related biological pathways (24), using co-expression
data is viable to capture the functional relations among
protein-coding and IncRNA genes. According to the same
analysis and the same microarray data used in Liao’s
method, 59 173 weighted co-expressions are constructed
and used in our method, which spans in 10381 protein-
coding genes defined in RefSeq database (25) and 1713
long non-coding genes defined in FANTOMS3 project
(26). In this paper, a IncRNA is denoted by its trans-
criptional framework (TK) number which is provided in
FANTOM3 database. The detailed information of 1713
long non-coding genes is provided in Supplementary
Table S1. To cover more and reliable protein—protein
interactions in our bi-colored network, we downloaded
1393102 weighted protein interaction data derived from
high-throughput experiments from STRING database
(27) (downloaded on 5 April 2011). According to 10381
protein-coding genes defined in the co-expression data, we
remove the redundant protein—protein interactions, result-
ing in 29 393 protein—protein interactions in our bi-colored
network. As for function category, we used the function
vocabulary defined in the Gene Ontology (GO) project
(28) to annotate IncRNAs by our method. The known

‘gene2go’ associations are downloaded from NCBI
database (downloaded on 26 May 2011), and there are
6027 biological-process (BP) GO function terms involved
in our data set of the known ‘gene2go’ associations.

Global propagation algorithm

Our global propagation algorithm is based on a
semi-supervised learning algorithm (29), which has
applied to prioritize disease genes successfully (30). The
input to this algorithm consists of a set of known
‘gene2go’ annotations with a set of function categories
P, a query function category f and the bi-colored
network defined as a simple weighted undirected graph
G = (V,E,w). In this graph, a vertex v € V' represents a
gene, an edge e € E between nodes u and v exists if the
corresponding genes are known to be connected in the
bi-colored network, and the weight function w denotes
the reliability of each edge. The goal is to rank all the
unannotated genes in V' with respect to the function
category f. It is assumed in our method that the top
ranked genes can be functionally annotated with
function category f.

By N(v), we denote the direct neighbors of vertex v.
Let S:V — R represent a function, quantifying the
extent to which a gene v is associated with a function
category f. Here, S is called prediction function that cor-
responds to the classification function for semi-supervised
learning problem. Let 7: V' — [0,1] represent a previous
knowledge score of function annotation, which assigns
value ‘1’ to the nodes that are known to be annotated
with function category f, and otherwise a value
computed by the function 7. See ‘Incorporating local
function enrichment information’ section for a more
detailed description of T.

The key to semi-supervised learning problem is the pre-
vious assumption of consistency (29). In our function an-
notation problem, consistency means that the prediction
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function S is smooth over the graph G in the sense that (i)
adjacent genes are assigned with similar function
categories; and (ii) the similar values of function S and
T should be assigned to the genes. To meet the consistency
requirements, the prediction function S are expressed
formally as Equation (2) with respect to function

category f,

S/ =ax [ > SIx w/(v,u):|+(1 —a)x T/ )

ueN(v)

where the parameter « € (0,1) weights the relative
importance of the global and local constraints, w’ is a
normalized form of w, as is described in the work of
Vanunu et al. (30).

With respect to all the function categories, the predic-
tion function S can be rewritten in matrix form as follows:

S=axSxW+1—-a)x T 3)

where W is a |V|x |V| normalized adjacent matrix of
weighted graph G, S is a |P| x |V] association score
matrix and 7 is a |P| x |V| matrix representing previous
knowledge of ‘gene2go’.

An iterative process (30) is applied to compute the
prediction function S as follows,

Si=ax ST x WH+(1—-a)x T @)

where S' := T. This iterative computation is guaranteed to
converge to the system’s solution (29,31,32).

Finally, given a function category, all the genes are
ranked according to the association scores with it. The
top ranked genes are annotated with the given function
category.

In the literature, there are many wonderful works on
function prediction for proteins based on network (21).
To infer candidate functions for as many as possible
IncRNAs in the bi-colored network, we draw inspiration
from the work of function prediction for proteins (21) to
develop a global propagation-based method to predict
probable functions for IncRNAs. Sharan et al. surveyed
the growing body of work on functional annotation of pro-
teins through their network of interactions. According to
their analysis (21), the Markov random field method of
Deng et al. (33) outperformed the other three methods
(34-36) by a significant margin, whereas the others ex-
hibited similar performance. In the current work, we
have applied a simple global propagation method
instead. The chief reason is that our bi-colored network,
containing two kinds of genes (coding or non-coding), is a
heterogeneous network, and consequently, standard
golden data for IncRNA function annotation are absent,
which are critical for parameter estimation in Markov
random field method. Our propagation method simulates
the information flow in the network where genes with
known function annotation propagate the information
to its neighbors iteratively. As all the genes in the con-
nected network can receive information flowed into
them, our method can functionally characterize as many
genes as possible.

PAaGce4 or 13

Incorporating local function enrichment information

Akin to the work of function prediction for proteins (37),
in which the number of times each function annotation
occurs in all neighboring proteins of each protein is
used as the confidence score for a particular function,
we compute a primary score for each association
between function category and gene based on a
‘voting-rule’. A scoring function 7" based on the primary
voting score is then defined to represent the previous
knowledge score as follows:

(1) Primary voting score. When a gene is not known to
be annotated with a function category, the primary
voting score for the association between the gene
and the function category 1is defined as the
fraction of neighboring genes that are annotated
with the function. For a gene, the primary voting
score and the final previous knowledge score are set
to “1” if the gene is known to be annotated with
a function.

(i1) Previous knowledge score. For a given function
category f and a gene v, which is not annotated
with f, n/ denotes the number of neighboring
genes of gene v, which are annotated with f, N(v)
is the number of neighboring genes, o is a user
defined parameter and the function 7 is defined in
Equation (5) to compute the previous knowledge
score between gene v and function f.

/ .
7 % ifN(v) > o 5)
vl No—o o nl :
e X 55 otherwise

Parameter tuning for function prediction

There are three parameters in our propagation algorithm:
the parameter «, the parameter o and the number of iter-
ations. In the following, we describe their roles and the
details about their tuning.

(1) The parameter « is used in the prediction function S
to give the relative importance of global and local
constraints, which simulates information flow and
the previous knowledge, respectively. In cross-
validation test, we randomly choose 1000 genes
with known function annotations and removed
their function annotation. Then, the algorithm is
applied to predict probable functions for these
1000 genes with different values for the parameter
a. It was found out that setting « to the value
within the interval (0.1-0.9), our method can give
similar performance, and setting « to the ‘0.618” can
give a slightly better performance. And this is
shown in Supplementary Figure SI1.

(i) The parameter o serves as the threshold for the
degree of a gene (i.e. N(v)) and is used in the
function 7T to compute previous knowledge on
function annotation. In the definition of function
T, not only the ratio of #, to N(v) but also the
magnitude of N(v) are considered. The ratio of n(
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to N(v) for the genes with a small number of neigh-
bors should be treated carefully (e.g. consider a gene
with only one neighbor that is annotated with
function f. Although the ratio of n( to N(v) is ‘I’,
it is not reasonable to set the previous knowledge
score as ‘1°). Similar cross-validation tests to those
used for tuning the parameter « as aforementioned
are applied to tune the parameter o. The overall
performance is not sensitive to the choice of o. In
our method, setting o = 5 can give a good perform-
ance (shown in Supplementary Figure S1). As for
the choice of ‘5’ other than other larger or smaller
number, it is a trade-off between global prediction
and local previous knowledge (i.e. to predict func-
tions for as many IncRNAs as possible based on
global propagation and also consider the local
function annotation of neighbors).

(ii1) The number of iterations. The mean square deviation
of the adjacent prediction score matrices, set as
‘1.0E-5, is used to control the iterative computation,
that is, once the mean square deviation of S’ ' and §
isno >‘1.0E-5’, the iterative computation will stop. In
our implementation, the prediction score matrix has
a size of 6027 x 12094, where 6027 is the number
of GO terms and 12094 is the number of genes in
the bi-colored network. Hence, when the mean
square deviation is no >‘1.0E-5, the two matrices of
this size can be regarded as identical; therefore, we can
conclude the iterative process has converged.

Cross-validation test

The cross-validation test is used with an immediate
purpose to test the performance of Inc-GFP and is used
to tune the parameters in our method. To perform cross-
validation test, a set of coding genes with known function
annotations are randomly chosen, and their function
annotations are removed. Our method will be evaluated
by its success rate in reconstructing the hidden function
annotations. The removed function annotations are con-
sidered as golden standard positive (GSP) data. For each
chosen gene, we also artificially associate it with a set
of function categories selected randomly from those
categories that are not known to be related with the
gene. We call this set of artificial association the golden
standard negative (GSN) data. For every function
category f, the top k ranked genes are considered to be
functionally characterized by f in our method. The part
of GSP data within the top k prediction results are
regarded as the true positive (TP) data, the other part
of GSP as false negative (FIN) data, and the part of GSN
data within the top k prediction results are regarded as false
positive (FP) data, the other part of GSN as true negative
(TN) data. Our function predictor Inc-GFP is evaluated
in terms of precision and recall when varying the rank
threshold k(1 < k < 1000). The precision and recall are
defined as follows:

TP

recall = m

(6)

precision = W
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The measures used here are similar to that in function
prediction. In function prediction for proteins, several
measures have been suggested to evaluate the quality of
an annotation method (33,36). The evaluation is based
on measuring the precision and recall of an annotation
method and is performed in a leave-one-out cross-
validation test (i.e. the known annotation of a single
protein is hidden, one at a time, and is predicted using
the network and the annotations of all other proteins),
taking into account multiple annotations per protein.
Here in our method, n-fold cross-validation test are used
to evaluate the performance of algorithm (i.e. first, all the
genes with known annotations are divided into n parts
evenly, then the function annotations for one part of
genes are removed and predicted based on the annotations
of all other parts of genes. The average precision and
recall of n tests are used to measure the performance).
In these tests, randomized bi-colored networks are used
in the experiments, which are described in the
Supplementary Methods.

RESULTS
Topological structure analysis of the bi-colored network

In this network, there were 87874 edges (59173
co-expressions, 29393 protein—protein interactions and
692 both co-expression and protein—protein interaction)
covering 12094 genes (including 10381 protein-coding
genes and 1713 IncRNAs), which is shown in Figure 2B.
The maximum connected subnetwork of the bi-colored
network and a small part of it are shown in Figure 2A.
The degree distribution of the bi-colored network obeys a
power law distribution, that is, the bi-colored network is a
scale-free network, which is also depicted in Figure 2C.

The effects of incorporating protein interaction data

In the bi-colored network, there are 692 edges covered by
co-expression and protein interaction. This number is
small in comparison with the number of edges, 87 874;
therefore, the constructed bi-colored network is not
biased to the gene relations described by the co-
expressions data among protein-coding genes. In fact,
the incorporating of the protein interaction data makes
the density of the network larger than before. The
protein interaction data are able to facilitate the propaga-
tion of ‘function flow’ in the network and help improve
the effectiveness of our method of function prediction
for IncRNAs. To confirm this, Inc-GFP is applied to
the bi-colored network, co-expression network and
co-expression network integrated with randomized
protein interaction data. The influences of the integration
of protein interaction data and co-expression are
analyzed, and the results are depicted in Figure 2D. The
performance of Inc-GFP in the three networks is tested by
cross-validation tests on 1000 protein-coding genes with
known functions. The result of our method for the
bi-colored network is better than the co-expression
network. For rank threshold 50, Inc-GFP can achieve a
precision of 95% in the bi-colored network and 83% in
the co-expression network. To further evaluate the
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Figure 2. Coding—non-coding bi-colored biological network. (A) A maximum connected subnetwork of the bi-colored network of mouse is shown;
here, the red node represents protein coding gene and the green node represents IncRNA, the blue line represents co-expression between two genes,
the light blue line represents co-expression and protein interaction between two genes and the black line represents protein interaction between two
genes. (B) The distribution of ‘co-expression’ edges and ‘protein interaction’ edges in the bi-colored network. (C) The degree distribution of the
bi-colored network. Here, k is degree, P(k) denotes the probability with a degree k. (D) Superior performance of our bi-colored network.

influence of protein interaction data, we randomize the
protein interaction data completely and construct a
‘false” bi-colored network by integrating randomized
protein interaction data. Experiments show that the per-
formance of our method drops sharply for the ‘false’
bi-colored network. All the experiments show the power
of the integration of gene expression data and protein
interaction data in the bi-colored network.

Performance of Inc-GFP

We perform experiments with 2-, 3-, 5-, and 10-fold
cross-validation. All our cross-validation tests give quali-
tatively similar results. In a single n-fold cross-validation
test, we remove the known function annotations for one
part of randomly chosen annotated protein-coding genes,
then Inc-GFP is evaluated by the performance of recon-
structing the hidden function annotations in terms of
overall precision versus recall when varying the rank
threshold 1 <k < 1000. The precision is the fraction of
the true ‘gene2go’ annotations ranked within the top k
in the corresponding trial of the cross-validation proced-
ure, and recall is the fraction of the hidden annotations
that are recovered as one of the top k. The result of
cross-validation tests are depicted in Figure 3A. With
respect to the result of 10-fold cross-validation test,
Inc-GFP can achieve a precision of 94% for the rank
threshold 20. Even for rank threshold 1000, a precision

of 74% and a recall of 37% are still achieved. The use of
the rank threshold 1000 is a trade-off of precision and
recall for the performance of our algorithm, and we will
use this threshold in function prediction for IncRNAs for
further analysis and evaluation later.

The robustness analysis is also performed by adding
noise to the bi-colored network. Specifically, the noisy
bi-colored networks are constructed with 1/10, 2/10, 3/
10, 4/10 and 5/10 edges randomized in the original
bi-colored network. The cross-validation test is repeated
10 times in every kind of noisy bi-colored network on
the 1000 annotated protein-coding genes, and the
average performance of 10 repeated tests in every kind
of noisy bi-colored network is evaluated. The average per-
formance in 10 completely randomized bi-colored
networks is also evaluated. The results are compared
with that in original bi-colored network and are shown
in Figure 3B. In the noisy network with 1/10 edges
randomized, the performance is slightly inferior to that
in the original bi-colored network. As for the rank thresh-
old 15, Inc-GFP achieves a precision of 97.2% in the noisy
bi-colored network with 1/10 edges randomized, which
is slightly smaller than that of 97.8% in the original
bi-colored network. The results of Inc-GFP in other
noisy networks with 2/10, 3/10, 4/10 and 5/10 edges
randomized, even the completely randomized bi-colored
network are also analyzed. It is in line with our
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Figure 3. Performance of Inc-GFP. (A) The performance of Inc-GFP in cross-validation tests. (B) The performance of Inc-GFP in noisy bi-colored
networks with part of edges randomized. (C) The performance of Inc-GFP in noisy bi-colored networks with part of edges deleted.

expectations that the noisier the network is, the worse is
the prediction performance.

Furthermore, we apply Inc-GFP for ‘edge-deleted’ noisy
networks with part of edges deleted. With 1/10, 2/10, 3/10,
4/10 and 5/10 edges in the bi-colored network deleted,
the corresponding noisy bi-colored networks are con-
structed. The same cross-validation test as aforementioned
is repeated 10 times for each kind of noisy bi-colored
network. The average performance in terms of precision
versus recall for each noisy network is evaluated and the
results are depicted in Figure 3C. Although with 1/10, 2/10
or 3/10 edges deleted, the performance is slightly inferior
to that in the original bi-colored network, with 4/10 and
5/10 edges removed, the performance drops sharply. All
the experiments show that Inc-GFP is robust to the ‘dele-
tion noise’ in the network. This can be attributed to the
property of the global propagation method—as long as
the network is connected, the ‘function flow’ can propa-
gate effectively.

Function prediction for IncRNAs

IncRNASs are involved in diverse biological processes

Our function predictor Inc-GFP is applied to infer putative
functions for all the IncRNAs characterized in the
bi-colored network of mouse. Given a function category
(a GO term), the association score with each gene is
calculated. All the genes are ranked based on the association
scores with the given function. The given function category
is assigned to the IncRNAs among the top ranked genes.
Here, we set a rank threshold 1000, and assign the corres-
ponding functions to the IncRNAs ranked within top 1000.
In total, 1625 IncRNAS in the maximum connected sub-
network of the bi-colored network are functionally

characterized successfully. The function annotations for
these 1625 IncRNAs, ‘R1000_MCS’ (maximum connected
subnetwork), will be analyzed further and are available on
request.

The prediction results for these 1625 IncRNAs show
that they may be involved in diverse biological processes.
In ‘R1000_MCS’, there are 5984 of the 6027 GO terms
ascribed to IncRNAs, and with a rank threshold 100, there
are also 5284 GO terms involved in the function annota-
tion for IncRNAs. To further analyze the diversity of the
GO terms with which the IncRNAs are associated, the
level of a GO term in the tree-like organized GO vocabu-
lary system is also considered. The deeper the level of a
GO term is, the more specific is the GO term. The statistics
of the GO terms and the IncRNAs in ‘Inc2go’ associations
are depicted in Figure 4 for rank thresholds. As shown in
Figure 4 for the rank threshold 100, there are 1300
IncRNAs involved in 5284 GO terms, and the level for
87.7% of these GO terms is >3. Based on the GO slims,
a cut-down versions of GO (28), and ‘R1000_MCS’, we
constructed  ‘Inc2goSlim’  associations (details are
described in Supplementary Methods). A function atlas
for the 1625 IncRNAs is drawn based on ‘Inc2goSlim’
map and is shown in Supplementary Figure S2. As the
IncRNAs can act in cis or in trans regulation (38), the
IncRNAs are divided into three classes according to
their genomic loci relative to the protein-coding genes,
that is, ‘intergenic-lncRNA’, which lie in the intergenetic
region of coding genes, ‘intron-IncRNA’ in the intron of
a coding gene and ‘overlap-lncRNA’ that overlaps with
or is close to a coding gene. The details of our classifica-
tion are described in the Supplementary Methods. To
investigate the difference of function annotations, we
draw the functional atlas for the three classes of
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Figure 4. LncRNAs involved in diverse GO BPs. Here, the rank denotes the rank threshold. For the given rank threshold, the number of IncRNAs
and GO BPs involved in the predicted ‘Inc2go’associations are given on the top of bars.

IncRNAs based on ‘Inc2goSlim’ map. The details are
shown in Supplementary Figure S3-S5. All these
indicate that IncRNAs may play diverse roles in a biolo-
gical process, but collectively, IncRNAs are not likely to
have different roles at three kinds of distinct genomic loci.
Their function annotation profile is similar to that
observed for the protein-coding genes with known
function annotations.

Comparison with other methods

Computational approaches have been used in function pre-
diction for IncRNAs (4,5,6,19,20). We compare Inc-GFP
with Liao ef al.’s (20) network-based method. Our method
Inc-GFP inferred candidate functions for 1625 IncRNAs in
the maximum connected component of the bi-colored
network, and only 340 IncRNAs have been functionally
characterized by Liao et al.’s method. Regarding our pre-
dicted function annotations, almost all of them are consist-
ent with, and in many cases elaborated on, Liao ef al.’s
prediction results. For the details, 5776 (95.3%) of 6059
‘Inc2go’ associations predicted by Liao et al.’s hub-based
and module-based methods are consistent with
‘R1000_MCS’ by Inc-GFP. In all, 2686 (44.3%) of 6059
‘Inc2go’ associations are predicted with more specific
function categories by Inc-GFP in ‘R1000_MCS’ (e.g.
when a IncRNA is predicted with a GO term A, which is
a descendant of GO term B in the organized GO hierarchy,
it means that the function annotation—the IncRNA
annotated with GO term A, is more specific than the
function annotation—the IncRNA annotated with GO
term B). For example, the known IncRNA TK170500

(AK132348, Dixlas) is assigned more specific functions
than that in Liao et al.’s result, such as central nervous
system projection neuron axonogenesis, brain and central
nervous system development, neuron differentiation, regu-
lation of dendrite morphogenesis, skeletal muscle fiber de-
velopment and other functions related to development and
differentiation. All of these are consistent with the report
that Dixlas is expressed in forebrain and in regions
associated with neurogenesis in the mESCs (39).

Liao et al’s module-based method is also re-
implemented and tested on our bi-colored network, and
237 IncRNAs are functionally annotated (P = 1.0E-15).
The results are also compared with ‘R1000_ MCS’. The
same observation as aforementioned is made for this com-
parison. A total of 78 (13.8%) ‘gene2go’ associations are
predicted more specifically, 466 (82.2%) are perfectly con-
sistent, 5 (0.8%) behave common ancestor GO terms and
18(3.17%) are not in ‘R1000_MCS’. The experiment
shows that Inc-GFP is superior over Liao et al’s (20)
local network-based method. Especially for large-scale
function prediction of IncRNAs, 94.9% IncRNAs in the
network are functionally characterized by Inc-GFP in
comparison with 19.8% by Liao et al.’s method, and in
many cases, more specific functions are assigned for some
IncRNAs by Inc-GFP. In summary, we see that Inc-GFP
can predict the functions of more IncRNAs with more
accurate function annotations.

In the following, we discuss the differences between our
method and the ‘guilt by association’ method used by
other researchers (4,6,19). Their ‘guilt by association’
method is based on a local strategy and gene expression
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data. The co-expression pattern between protein-coding
genes and IncRNAs are mined and used to functionally
characterize the IncRNAs by the functions enriched in the
co-expression pattern. Our method is based on a global
strategy and the multiple data sources, including the gene
co-expressions and the protein interactions. The global
algorithm is applied to infer putative functions for all
the IncRNAs characterized in the bi-colored network. As
a result, our method can perform large-scale function pre-
dictions for IncRNAs. In the study of Guttman et al. (4),
they found the genes neighboring lincRNAs were strongly
biased toward those encoding transcription factors and
other proteins factors related to transcription. We
examined our prediction results for the IncRNAs and
filtered out the IncRNAs functionally annotated with the
functions enriched in the neighboring genes of lincRNAs.
The filtered IncRNAs are preferred to be linked together
in the bi-colored network, forming a network module. The
same situation occurs for the protein-coding genes
annotated with these functions. The IncRNAs and the
protein-coding genes can form a larger subnetwork in
the bi-colored network. These subnetworks are shown in
Supplementary Figure S6-S8. These functional modules
may suggest the hidden functional links between the
lincRNAs and their neighboring genes.

Similar work on the function annotation is also done in
other areas, such as predicting the associations between
genes and specific traits for Arabidopsis thaliana by Lee
et al. (40). Their method scored every gene in the network
by summing network edge weights connecting that gene to
known genes in that process. Based on the scores, the top
ranked genes are considered to be associated with that
process. We re-implemented their method and applied it
to our weighted bi-colored network. The results show that
the two methods have similar performance in precision
with varying rank threshold values k(1 < k& < 1000), but
the recall of their method is inferior to that of our method
(Supplementary Figure S9). When the neighboring genes
of a gene are associated with specific traits, their method
can easily compute a score to that gene. Their scoring
scheme favor high connected genes, and usually
overlook genes whose direct neighbors are not associated
with the traits. As the method of Lee et al. (40) is
applied to infer putative functions for the IncRNAs,
only 759 IncRNAs in the network are functionally
characterized by 3063 function categories.

Verified by KEGG pathway

Inspired by the work of Cui et al. (41,42), we want to see
which non-coding RNAs could be intertwined with the
signaling networks and signaling regulation and to
further verify the obtained function prediction for the
IncRNAs by Inc-GFP. We estimate it by the analysis of
KEGG (43) pathway enrichment in the bi-colored
network. First, all the genes in the bi-colored network
are mapped to the KEGG pathways according to the in-
volvement of the genes in the KEGG pathway (43). Then,
by considering the IncRNAs with no <10 direct protein-
coding neighbors and with at least one coding neighbor
involved in some KEGG pathway, we estimate a IncRNA
involved in a KEGG pathway with the use of the
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hypergeometric-distribution-based P-value of a pathway
enrichment in its protein-coding neighbors. Next, we set
the threshold for the P-value as 1.0E-5 to associate the
IncRNA with the pathway. There are 56 IncRNAs
involved in 58 KEGG pathway. The details of the
IncRNAs involved in the KEGG pathways are shown in
Supplementary Table S2. Based on the KEGG pathway
associated with the IncRNAs, we estimate the function
prediction for these 56 IncRNAs. High concordance is
observed between the KEGG pathway involvement and
the GO function prediction for the IncRNAs by Inc-GFP.
For example, the IncRNA TK4 is inferred to be involved
in T-cell receptor signaling pathway (P = 1.90464E-011),
hematopoietic cell lineage pathway (P = 1.89484E-010)
and primary immunodeficiency pathway (P =
3.53456E-008). Interestingly, TK4 is also predicted to as-
sociate with the function category as T-cell receptor sig-
naling pathway (rank = 58) successfully by Inc-GFP. TK4
is also involved in such GO function categories as T-cell
and B-cell proliferation and differentiation, cell surface
receptor linked signaling pathway, response to inflamma-
tory and virus and immune response. All these show the
perfect consistence between the GO function prediction by
Inc-GFP and KEGG pathway enrichment analysis for the
IncRNA TK4. Another example is about the IncRNA
TK102964. 1t is ascribed to be involved in the neuroactive
ligand-receptor interaction pathway (P = 1.14E-11),
retrograde endocannabinoid signaling pathway (P =
1.28E-9), nicotine addiction pathway (P = 2.34E-11),
GABAergic (gamma-aminobutyric acid, GABA) synapse
pathway (P = 1.27E-6) and morphine addiction pathway
(P = 9.7E-7). Inc-GFP successfully annotated the IncRNA
TK 102964 with function categories that are related to
neuron and nerve systems, which is shown in
Supplementary Table S2.

Case study: IncRNAs involved in pluripotency and
differentiation

LncRNAs have been implicated in some developmental
events of cell (44). Recently, Guttman et al. (45) per-
formed loss-of-function studies on most lincRNAs ex-
pressed in the mESCs and demonstrated that lincRNAs
have key roles in the circuitry controlling Embryo Stem
(ES) cell state. Mohamed et al. (46) identified four
mESC-expressed, conserved IncRNAs, and suggested
that these IncRNAs have potential roles in pluripotency.
We examined our function annotations for the IncRNAs
related to pluripotency and differentiation. The similarity
between the lincRNAs expressed in mESCs (45) and the
IncRNAs in our bi-colored network are computed by
Basic Local Alignment Search Tool (BLAST) (with
default parameters and E = 1.0E-10) (47). The
lincRNAs similar to our IncRNAs are annotated with
the function categories related to pluripotency and differ-
entiation by Inc-GFP. For example, the IncRNA
TK 119380 (AK160141), also identified as linc1609 (5), is
expressed in mESC and is involved in pluripotency and
differentiation (45). It is interesting to note that Inc-GFP
ascribes TK 119380 to the related functions, including epi-
thelial cell differentiation, mammary gland alveolus devel-
opment, sinoatrial node cell differentiation and
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development, lateral mesodermal cell differentiation and
development, secondary heart field specification and right
lung morphogenesis. TK119380 is also found to be
characterized with positive regulation of hepatocyte dif-
ferentiation and metanephric glomerular visceral epithelial
cell development. All these suggest that TK119380 is an
important functional RNA molecule associated with the
pluripotency and differentiation of the ESC and is
implicated in diverse biological development events. The
detailed function predictions for these lincRNAs are
shown in Supplementary Table S3.

The study of Mohamed er al. (46) suggests that con-
served Oct4-activated IncRNA TK113387 (AK028326)
contributes to the regulation of mESC pluripotency and
differentiation. Another study of Blackshaw et al. (48)
shows that TK113387 was dynamically and specifically
expressed in developing and mature retinal cells. With
the method Inc-GFP, we predicted that TK113387 is
associated with related functions, such as retinal bipolar
neuron differentiation, eye photoreceptor cell fate com-
mitment, retinal rod cell development, embryo develop-
ment ending in birth or egg hatching, negative regulation
of dendrite development and negative regulation of hep-
atocyte differentiation. We also predict TK 113387 to be
implicated in function categories as the development and
differentiation of neuron system, such as forebrain neuron
development, cerebellar Purkinje cell level development,
striatal medium spiny neuron differentiation and central
nervous system neuron differentiation. Our study further
confirms the argument that the IncRNA TK113387 plays
many key roles in mESCs and in developing mature retinal
cells.

We filtered out GO function terms related to mESCs
by text mining, and the IncRNAs that are ranked within
top 100 by Inc-GFP for these filtered GO terms are also
given in Supplementary Table S4. These results can give
suggestions for function investigation of the IncRNAs
that are probable to be involved in pluripotency and
differentiation.

Case study: IncRNAs related to neuronal system and
expressed in brain

Many IncRNAs have been shown to be developmentally
regulated and/or expressed in specific tissues (49). For
example, Mercer et al. (50) identified 849 IncRNAs that
are expressed in the adult mouse brain, and they found out
that the majority showed specific expression patterns in
adult mouse brain. Here, we examined our function anno-
tations for the IncRNAs characterized in the study of
Mercer et al. (50). Among the identified 849 IncRNAs
by Mercer et al., 29 IncRNAs exist in our bi-colored
network. The function annotation for 23 of these 29
IncRNAs by Inc-GFP is highly consistent with the study
of Mercer et al. For example, the three IncRNAs
TK104684 (AK032694), TK16243(AK032566) and
TK85669(AK046289) exhibit enriched expression in all
the 11 neuroanatomical regions of mouse brain, and
they are inferred to many related function terms, such as
central nervous system development, neuronal action
potential propagation, ear development, olfactory nerve
structural organization and sleep. The function
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annotation for these 23 IncRNAs by Inc-GFP is
provided as Supplementary Table S5. In a subsequent
study by Mercer et al. (51), they observed that the
IncRNAs are expressed in mouse neural stem cells,
associated with neuronal and glial cell differentiation
and are expressed dynamically with modification of chro-
matin architecture. For example, they distinguished four
IncRNAs that may be involved specifically in GABAergic
neuron lineage commitment by selecting non-coding
RNAs upregulated during GABAergic neuron differenti-
ation but downreguated during oligodendrocyte differen-
tiation, and the IncRNA TK78533(AK044422) in our
bi-colored network is included. Consistently, Inc-GFP
ascribes TK78533 to be involved in diverse roles in
neuron stem cell, which are shown in detail in
Supplementary Table S6. More importantly, the
IncRNA TK78533 is high scoring ranked to function
categories such as positive regulation of oligodendrocyte
differentiation, negative regulation of synaptic transmis-
sion, GABAergic, cell-cell adhesion involved in neuronal—
glial interactions involved in cerebral cortex radial glia
guided migration, cerebral cortex GABAergic interneuron
differentiation and fate commitment and cerebral cortex
GABAergic interneuron migration. Our method Inc-GFP
also predicts the proper functions for many IncRNAs dy-
namically  expressed in  different  stages  of
oliogodendrocyte and neuronal differentiation in their
study (these IncRNAs are provided in Supplementary
Table S7, and the function annotation for these data is
available on request), and more case studies are described
in Supplementary Methods.

We also filtered out GO function terms related to mouse
brain and neurons by text mining, and the IncRNAs,
which are ranked within top 100 by Inc-GFP for these
filtered GO terms, are also given in Supplementary
Table S8. These results can give suggestions for function
investigation of the IncRNAs that are probable to be
involved in mouse brain and nervous system.

More case studies are included in Supplementary
Methods. Taken together, our study suggests that
IncRNAs may be involved in many diverse biological
functions. The prediction result of Inc-GFP may assist
further investigation of the functions of the IncRNAs.

Function prediction for homologous human IncRNAs

To enhance the general interest of the scientific community,
we try to transfer the function annotation for mouse
IncRNAs to any homologue IncRNA in human. To do
this, we search similar human IncRNAs to our mouse
IncRNAs by BLAST tool (program with BLASTN,
E — value < 1.0E — 10, with others default), the sequences
for human and mouse IncRNAs are downloaded from
NONCODE 3.0 database (downloaded on 27 February
2012). The mouse IncRNAs and human IncRNAs are
formatted as the database and another as query to
perform blastall command, respectively. A human
IncRNA is considered as a homologue of a mouse
IncRNA as the similarity from human to mouse and that
from mouse to human have an identity score no <0.9 and
e-value no >1.0E-10. Finally, 32 homologous IncRNAs in
human have been found, which are provided in
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Supplementary Table S9. Based on the function prediction
for mouse IncRNAs, the functional roles for these 32 hom-
ologous IncRNAs in human can be suggested. For
example, the human IncRNA MALATI is a homologue
to the mouse IncRNA TK 102932 (AK141413). MALATI
depletion resulted in aberrant mitosis, with a large fraction
of cells accumulating at G2/M boundary and increased
cell death (52). The IncRNA TK 102932 was ascribed to
such function term as negative regulation of G2/M transi-
tion of mitotic cell cycle.

DISCUSSION

Although the mammalian genome encodes thousands
of IncRNAs, only a minority have been functionally
characterized in detail. Several other methods for the
function annotation of the IncRNAs have been reported,
but these have mainly been directed at cell line-specific or
tissue-specific IncRNAs (5,6,45). A network-based predic-
tion method is reported by Liao et al. (20), but only 340
of all the 1720 IncRNAs are functionally annotated.
Function prediction for the IncRNAs in these methods is
based on local function enrichment in a specific gene set.
In this work, a global network-based strategy is used for
the first time to predict probable functions for the
IncRNAs at large scale, and a function predictor
Inc-GFP is developed for IncRNAs.

A coding—non-coding bi-colored biological network is
constructed based on gene expression data and protein
interaction data, which is inspired by the construction of
coding—non-coding co-expression network in Liao et al.
(20) and many wonderful works on function prediction
for proteins (21). The advantage of bi-colored network
can be attributed to the better connectivity of the
bi-colored network than that in co-expression network.
Moreover, this may be ascribed to the exploiting of the
comprehensive interactions among different types of mol-
ecules. A few of recent studies reported comprehensive
interactions between RNAs and proteins (53,54).
Furthermore, the physical interactions between the
IncRNAs and protein complexes have been identified in
several other studies (19,55). All these findings are in
favor of the integration of coding—non-coding
co-expression data and protein interaction data to func-
tionally characterize the IncRNAs in the network. Of
course, such interaction data can also be incorporated
into the construction of bi-colored network for better
function annotations of IncRNAs.

To functionally characterize as many IncRNAs as pos-
sible in the network, we designed a global propagation
algorithm based on the bi-colored network in Inc-GFP.
In this global propagation algorithm, local and global
topological properties of every node are exploited to
infer putative functions for unannotated IncRNAs based
on the known function annotations. Among the 1713
IncRNAs in the bi-colored network, the 1625 (94.9%)
IncRNAs in the maximum connected component are all
functionally characterized. The prediction results for the
IncRNAs show that they involve in diverse biological
functions, but IncRNAs are not likely to have different
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roles relative to the three kinds of distinct genomic loci.
The results also show that Inc-GFP can infer more specific
functions for much more IncRNAs than other methods.
The function annotations for many IncRNAs highly
match those in the known literature, especially the
IncRNAs expressed in ESCs and neuronal cells.
Although a global network-based strategy is successfully
exploited in Inc-GFP for function annotations of
IncRNAs, our method can be improved in the following
directions. First, it is limited to the IncRNAs, which can be
characterized in the bi-colored network. Further expand-
ing the bi-colored network to embrace more reliable inter-
actions between IncRNAs and other molecules may
increase the power of Inc-GFP. As for exploiting gene
expression data in our method, it should be considered
that when different expression data sets by other studies
or a small part of our expression data sets are used, how
will be the final bi-colored network and the function pre-
diction performance? According to other studies of
co-expression among genes (23,56), they consider the two
genes are co-expressed in at least three data sets. In our
method, ‘3’ is also used to construct the co-expressions
among the genes. To construct reliable co-expression rela-
tions among genes, the number of data sets used to con-
struct the reliable co-expressions should not be too small.
To further investigate the influence of the number of micro-
array data sets used in our method, we simulate it using
only a small fraction of all 34 data sets in our method by
randomly removing a fraction of co-expressions in our
original co-expression relations. To do this, we randomly
removed 1/10, 2/10, 3/10, 4/10 and 5/10 co-expression re-
lations among all the genes from original weighted
co-expressions and then constructed the corresponding
bi-colored networks. Based on these bi-colored networks,
we evaluated the performance of our method. These tests
are performed on five different sets of randomly chosen
protein-coding genes. And the average precision and
recall are computed to evaluate the performance of our
method, which are shown in Supplementary Figure S10.
When Inc-GFP is applied in the bi-colored network with
a fraction of co-expression removed, the performance
drops slightly in comparison with that in original
bi-colored network. It can be concluded that: (i) when
only a small fraction of all 34 data sets are used, the final
co-expression network becomes smaller and sparser than
before; and (ii) the function prediction performance will
drop slightly. These can be attributed that the bi-colored
network becomes smaller and sparser and includes more
disconnected small components than before, and all these
will not be helpful in the information flow of the network.
As for exploiting other data sources, we suggest that the
ongoing discovery of interactions between IncRNAs and
other biological molecules are valuable for the study of
IncRNAs, including the function prediction. Second, in
this work, not only a function predictor is provided but
also an open computational framework is given. As a
result, a simple global propagation method is applied.
Other network-based prediction algorithms should be
incorporated to acquire a better performance with a low
false positive rate. Third, the GO (28) function categories
are used to annotate the IncRNAs in the network, the
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co-relation among the GO terms may lead to the co-related
function annotations for the IncRNAs. The function clas-
sification for IncRNAs is not feasible based on these
co-related function annotations currently. And other
function labels should be characterized for the IncRNAs
in the future.

Taken together, based on a global network-based
strategy, our global function predictor Inc-GFP illustrates
well the power in function prediction of IncRNAs. It is
expected that by computational function prediction and
knock-out experiments at the same time (6), the two
benefit each other and facilitate the study of IncRNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-9, Supplementary Figures 1-10,
Supplementary Methods and Supplementary References
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